Abstract
A description is presented of the indefinite structure of quantum stochastic (QS) calculus in Fock space, as developed by Hudson and Parthasarathy, with the quantum stochastic integral defined as a continuous operator on the projective limit of Fock spaces. Differential conditions are found for QS calculus of input-output QS processes and nondemolition measurements, and it is proved that the nondemolition condition is necessary and sufficient for the existence of conditional expectations relative to the subalgebra of observables and any state vector. A stochastic calculus of posterior (conditional) expectations of quantum nondemolition processes is developed, and a general stochastic equation is derived for quantum nonlinear filtering, both in the Heisenberg picture (for posterior operators) and in the Schrödinger picture (for the posterior density matrix and wavefunction). It is shown that posterior dynamics, unlike prior dynamics, does not mix states if the nondemolition measurement is complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.