Abstract

It is shown that the inert properties of a stationary random process can be expressed in terms of the ratio of its correlation interval τx to the doubled variance Dx. When using a fixed value of Planck’s constant h as a proportionality factor, the ratio hτx/2Dx has the dimension of a kilogram and can be used as an equivalent of a mass standard. It is proposed to use thermal (i.e., Johnson–Nyquist) noise as a reference Gaussian stationary random process. The theoretical substantiation of the project for the creation of “thermoelectric semiconductor ampere-balances” for balancing the inert mass of a quasi-ideal silicon-28 ball is also given. Combining these two projects can provide the basis for a stable and reproducible mass standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.