Abstract

—The hybrid AC/DC microgrid (MG) configuration is efficient as it reduces the need for multiple power conversions and hence losses. Therefore, this paper focuses on the study of grid assisted hybrid AC/DC MG comprising of solar PV and fuel cell (FC) systems on DC subgrid with supercapacitor (SC) as the short term storage device and wind energy conversion system (WECS) on the AC subgrid. A comprehensive study of the operation of MG is performed under varying system conditions in MATLAB/Simulink software. The real and reactive power (PQ) control scheme is used to regulate the DC bus voltage and power flow between the subgrids. Genetic algorithm (GA), artificial bee colony (ABC) optimization, particle swarm optimization (PSO) and the PSO with new update mechanism (PSOd) are used to compute the optimum gain values of proportional-integral (PI) controller in the PQ control scheme. The SC bank effectively reduces the power stress on the subgrids of the proposed hybrid MG system during intermittent conditions of load and generation. In addition, a comparative study of the heuristic optimization techniques is presented in detail. The ABC algorithm is found to arrive at the best results in determining the optimal gains of PI controller

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.