Abstract
The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins. An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs. In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test. STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.