Abstract

The fabrication of atomic-scale devices in silicon requires the encapsulation of dopant atoms which have been incorporated into the silicon surface at atomically precise positions using scanning tunnelling microscopy (STM) lithography. During silicon encapsulation, it is important to minimise segregation and diffusion of dopant atoms in order to retain the lithography defined device structure. Buried dopant imaging using STM is capable of imaging dopant atoms such as phosphorus after encapsulation in silicon several monolayers below the silicon surface, thus making it possible to check the integrity of the device structure. To fabricate buried phosphorus-doped samples, we use phosphine gas as a source of phosphorus atoms and incorporate the phosphorus atoms into a Si(001) surface during an annealing step. Molecular beam epitaxy is used to encapsulate the dopant atoms with several monolayers of silicon. After encapsulation, we hydrogen terminate the silicon surface in order to image the buried phosphorus dopants using STM. We show that a buried phosphorus atom appears as a bright glow superimposed on the silicon dimer structure in empty state STM images, whereas filled state images only show a very faint protrusion in the vicinity of the phosphorus atom. We highlight the importance of our results for the fabrication of atomic-scale devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.