Abstract

Porcine epidemic diarrhea (PED) is one of the diseases that causes great losses for livestock farmers. Because vaccines against the disease are not very effective, there is a great demand for biological products with effective resistance to PED virus (PEDV). One of the most important trends today is the use of active ingredients from nature in animal husbandry. This study aimed to create an effective agent against PEDV from the extract of Stixis scandens, which has been shown to inhibit PEDV. The aqueous (denoted as TCN) and ethanolic extracts (denoted as TCC) of Stixis scandens leaves were first prepared and then qualitatively analyzed for their chemical compositions. The TCN was used to synthesize ZnO nanoparticles (NPs) at various sizes from 20 to 120 nm. Subsequently, TCC was loaded on ZnO NPs to form ZnO-extract nanoformulations with an extract loading content of 5.8-7.6%. Total polyphenols (TP) and total alkaloids (TA) in TCC were 38.51 ± 0.25 μg GAE per mg and 22.37 ± 0.41 μg AtrE per mg, respectively. TP was less loaded but more released from the nanoformulations than TA. The A1T nanoformulation, containing only 7.6% extract, had a minimum PEDV inhibitory concentration of 3.9 μg mL-1, which was comparable to that of TCC. The experiments confirmed that the nanoformulations are promising for PEDV inhibition applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.