Abstract

Plasmid transfection in cells is widely employed to express exogenous proteins, offering valuable mechanistic insight into their function(s). However, plasmid transfection efficiency in primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs) is restricted with lipid-based transfection reagents such as Lipofectamine. The STING pathway, activated by foreign DNA in the cytosol, prevents foreign gene expression and induces DNA degradation. To address this, we explored the potential of STING inhibitors on the impact of plasmid expression in primary ECs and SMCs. Primary human aortic endothelial cells (HAECs) were transfected with a bicistronic plasmid expressing cytochrome b5 reductase 4 (CYB5R4) and enhanced green fluorescent protein (EGFP) using Lipofectamine 3000. Two STING inhibitors, MRT67307 and BX795, were added during transfection and overnight post-transfection. As a result, MRT67307 significantly enhanced CYB5R4 and EGFP expression, even 24 hours after its removal. In comparison, MRT67307 pretreatment did not affect transfection, suggesting the inhibitor's effect was readily reversible. The phosphorylation of endothelial nitric oxide synthase (eNOS) at Serine 1177 (S1177) by vascular endothelial growth factor is essential for endothelial proliferation, migration, and survival. Using the same protocol, we transfected wild-type and phosphorylation-incapable mutant (S1177A) eNOS in HAECs. Both forms of eNOS localized on the plasma membrane, but only the wild-type eNOS was phosphorylated by vascular endothelial growth factor treatment, indicating normal functionality of overexpressed proteins. MRT67307 and BX795 also improved plasmid expression in human and rat aortic SMCs. In conclusion, this study presents a modification enabling efficient plasmid transfection in primary vascular ECs and SMCs, offering a favorable approach to studying protein function(s) in these cell types, with potential implications for other primary cell types that are challenging to transfect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.