Abstract
The relative timing of presynaptic and postsynaptic spikes plays a critical role in activity-induced synaptic modification. Here we examined whether plasticity of orientation selectivity in the visual cortex depends on stimulus timing. Repetitive pairing of visual stimuli at two orientations induced a shift in orientation tuning of cat cortical neurons, with the direction of the shift depending on the temporal order of the pair. Induction of a significant shift required that the interval between the pair fall within ±40 ms, reminiscent of the temporal window for spike timing-dependent synaptic plasticity. Mirroring the plasticity found in cat visual cortex, similar conditioning also induced a shift in perceived orientation by human subjects, further suggesting functional relevance of this phenomenon. Thus, relative timing of visual stimuli can play a critical role in dynamic modulation of adult cortical function, perhaps through spike timing-dependent synaptic plasticity.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have