Abstract

The relationship between stimulus intensity and startle response magnitude (SIRM) can assess the startle reflex and prepulse inhibition (PPI) with advantages over more commonly used methods. The current study used the SIRM relationships in mice to determine differences between white noise and pure tone (5 kHz) stimuli. Similarly to rats, the SIRM relationship showed a sigmoid pattern. The SIRM-derived reflex capacity (RMAX) and response efficacy (slope) of the white noise and pure tone stimuli in the absence of prepulses were equivalent. However, the pure tone startle response threshold (DMIN) was increased whereas the stimulus potency (1/ES50) was decreased when compared to white noise. Prepulses of both stimulus types inhibited RMAX and increased DMIN, but the white noise prepulses were more effective. Both stimulus intensity gating and motor capacity gating processes are shown to occur, dependent on prepulse intensity and stimulus onset asynchrony. Prepulse intensities greater than 10 dB below the startle threshold appear to produce PPI via stimulus intensity gating, whereas a motor capacity gating component appears at prepulse intensities near to the startle threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call