Abstract

In the barrel field of the rodent primary somatosensory cortex (S1bf), excitatory cells in layer 2/3 (L2/3) display sparse firing but reliable subthreshold response during whisker stimulation. Subthreshold responses encode specific features of the sensory stimulus, for example, the direction of whisker deflection. According to the canonical model for the flow of sensory information across cortical layers, activity in L2/3 is driven by layer 4 (L4). However, L2/3 cells receive excitatory inputs from other regions, raising the possibility that L4 partially drives L2/3 during whisker stimulation. To test this hypothesis, we combined patch-clamp recordings from L2/3 pyramidal neurons in S1bf with selective optogenetic inhibition of L4 during passive whisker stimulation in both anesthetized and awake head-restrained mice. We found that L4 optogenetic inhibition did not abolish the subthreshold whisker-evoked response nor it affected spontaneous membrane potential fluctuations of L2/3 neurons. However, L4 optogenetic inhibition decreased L2/3 subthreshold responses to whisker deflections in the preferred direction, and it increased L2/3 responses to stimuli in the nonpreferred direction, leading to a change in the direction tuning. Our results contribute to reveal the circuit mechanisms underlying the processing of sensory information in the rodent S1bf.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call