Abstract

A poly(methyl methacrylate)–poly(acrylic acid)–poly(2-vinyl pyridine)–poly(acrylic acid)–poly(methyl methacrylate) (PMMA–PAA–P2VP–PAA–PMMA), ABCBA pentablock terpolymer was synthesized by “living” anionic polymerization and was studied in aqueous media at different pH conditions in the presence of MeOH. By tuning the pH and/or the solvent selectivity and dielectric constant of the medium, reversible hydrogels of different nature were formed. At low pH the hydrogel is based on a three dimensional network comprising PMMA hydrophobic cores (physical crosslinks) interconnected by complex bridging (elastically active) chains constituted of positively charged P2VP and non-ionic PAA segments. At high pH the hydrogel is transformed reversibly to a negatively charged network the bridging chains of which comprise ionized PAA segments interrupted by hydrophobic P2VP blocks, swellable on MeOH addition. Furthermore, we found conditions for the formation of flower-like micelles of different topologies and nature like core–shell–corona micelles with positively charged corona (pH<2), multicompartment micelles comprising P2VP and PMMA hydrophobic domains (pH 8.3, low MeOH content), micelles constituted of a centrosymmetric compartmentalized core and PAA negatively charged corona (pH 8.3, 30%, 40% MeOH), and core–shell micelles of PMMA cores (pH 8.3, 50% MeOH).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.