Abstract

Microscale intelligent actuators capable of sensitive and accurate manipulation under external stimuli hold great promise in various fields including precision sensors and biomedical devices. Current microactuators, however, are often limited to a multiple-step fabrication process and multimaterials. Here, a pH-triggered soft microactuator (<100 μm) with simple structure, one-step fabrication process, and single material is proposed, which is composed of deformable hydrogel microstructures fabricated by an asymmetric femtosecond Bessel beam. To further explore the swelling-shrinking mechanism, the hydrogel porosity difference between expansion and contraction states is investigated. In addition, by introducing the dynamic holographic processing and splicing processing method, more complex responsive microstructures (S-shaped, C-shaped, and tortile chiral structures) are rapidly fabricated, which exhibit tremendous expected deformation characteristics. Finally, as a proof of concept, a pH-responsive microgripper is fabricated for in situ capturing polystyrene (PS) particles and neural stem cells rapidly. This flexible, designable, and one-step approach manufacturing of intelligent actuator provides a versatile platform for micro-objects manipulation and drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.