Abstract
The present study aimed to investigate the effect of the stimulatory heterotrimeric GTP-binding (Gs) protein signaling system on cisplatin-induced apoptosis of lung cancer cells and its underlying mechanism as an attempt to develop a novel strategy to improve the therapeutic efficacy of cisplatin. Overexpression of the constitutively active alpha subunit of Gs (GalphasQL) in A549 human lung cancer cells increased cisplatin-induced apoptosis, and knockdown of Galphas with small hairpin RNA decreased the percentage of apoptotic cells. GalphasQL increased the expression of the proapoptotic proteins B-cell leukemia/lymphoma-2 genes (Bcl-2) homologous antagonist killer protein (Bak) and Bcl-2 associated X protein (Bax), and decreased the expression of the antiapoptotic proteins Bcl-2 and Bcl-Xlong protein. Knockdown of Bak blocked the augmentative effects of GalphasQL. GalphasQL decreased the degradation rate of the Bak protein, and increased Bak mRNA transcript levels. GalphasQL increased Bak-luciferase activity in a protein kinase A and cyclic AMP response element-dependent manner. GalphasQL also augmented cisplatin-induced apoptosis of H1299 human lung cancer cells that lack functional p53. From this study, it is concluded that Galphas augments cisplatin-induced apoptosis of lung cancer cells partially through upregulating Bak expression by increasing transcription and by decreasing the rate of protein degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.