Abstract

H1, a bromized derivative of tetrandrine, has been reported to induce apoptosis in human cancer cells. But, the underlying mechanism of apoptosis triggered by H1 is unclear. In the present study, we found that H1 triggered death receptor 5 (DR5)-dependent apoptosis in non-small cell lung cancer (NSCLC) cells. Further study showed that H1 activated ER stress through enforcing the expression of Bip/GRP78, IRE1α, p-eIF2α, and CHOP. Moreover, abrogating CHOP expression blocked DR5 upregulation and subsequent apoptosis, indicating that CHOP was essential for DR5-dependent apoptosis induced by H1. In addition, H1 greatly downregulated cellular FLICE-inhibitory protein (c-FLIP), and enhanced expression of c-FLIP protected cancer cells from apoptosis in spite of H1 therapy. Furthermore, we discovered that H1 induced autophagy in human NSCLC cells. Interestingly, the autophagy induced by H1 played a protective function in NSCLC cells and effectively weakened caspase-mediated apoptosis. In summary, these findings suggest that H1 induces DR5-dependent apoptosis in human NSCLC cells via stimulating ER stress signaling pathway, and pharmacologically inhibiting autophagy will be an efficient approach to synergize H1-caused apoptosis in lung cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.