Abstract
This study examines the characteristics of the electric field (E-field) induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). The electric field induced by five ECT electrode configurations (bilateral, bifrontal, right unilateral, focal electrically administered seizure therapy, and frontomedial) as well as an MST coil configuration (circular) was computed in an anatomically realistic finite element model of the human head. We computed the maps of the electric field strength relative to an estimated neural activation threshold, and used them to evaluate the stimulation strength and focality of the various ECT and MST paradigms. The results show that the median ECT stimulation strength in the brain is 3-11 times higher than that for MST, and that the stimulated brain volume is substantially higher with ECT (47-100%) than with MST (21%). Our study provides insight into the observed reduction of cognitive side effects in MST compared to ECT, and supports arguments for lowering ECT current amplitude as a means of curbing its side effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.