Abstract

We investigated the mechanism by which estrogen stimulates pulmonary surfactant production in the fetal rabbit. Maternal administration of 17β-estradiol (5–75 μg) on day 25 of gestation resulted in a greater than twofold increase in the rate of choline incoporation into phosphatidylcholine in fetal lung slices on day 26 (full term = 31 days). Estrogen administration increased the activity of fetal lung cholinephosphate cytidylyltransferase by 62%. It had no effect on the liver enzyme. When assayed in the presence of phosphatidylglycerol fetal lung cholinephosphate cytidylyltransferase activity was increased 4.6-fold but it was not influenced by estrogen under these conditions. These findings suggest that estrogen stimulates cholinephosphate cytidyltransferase by increasing the activity of existing enzyme (possibly by increasing the amount of phosphatidylglycerol or other acidic phospholipid in the tissue) rather than by increasing the amount of enzyme-protein. Stimulation of fetal lung cholinephosphate cytidylyltransferase by estrogen as well as by glucocorticoids (Rooney, S.A., Gobran, L.I., Marino, P.A., Maniscalco, W.M., and Gross, I. (1979) Biochim. Biophys, Acta 572, 64–76) suggest that this enzyme may be rate-regulatory in the de novo biosynthesis of phosphatidylcholine. Estrogen administration also resulted in a 26% increase in the activity of pulmonary lysolecithin acyltransferase, an enzyme involved in the synthesis of disaturated, surface-active phosphatidylcholine. Lung choline kinase was slightly decreased following estrogen treatment bu ethanolaminephosphate cytidylyltransferase, cholinephosphotransferase, phosphatidate phosphatase and lysolecithin : lysolecithin acyltransferase were unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.