Abstract
Vesicles isolated from the apical membrane of stimulated oxyntic cells [stimulation-associated (SA) vesicles] are highly permeable to KCl. The KCl flux is coupled to an electroneutral ATP-driven H+-K+ exchange (the H+-K+-ATPase) to produce net intravesicular HCl accumulation. In the past, we observed that rates of KCl transport were not accelerated by valinomycin and that dissipation of preformed H+ gradients in the presence of a protonophore (carbonyl cyanide, m-chlorophenylhydrazone, 10 microM) required the simultaneous presence of valinomycin. Consequently the fast KCl transport was attributed to an electroneutral cotransport system. Now we have been able to elicit fast H+ gradient dissipation in the absence of valinomycin by using the protonophore tetrachlorosalicylanilide. Experiments carried out in the absence of Cl- demonstrated the existence of a specific high-conductance pathway for K+. Experiments in K+-free medium demonstrated the existence of a high Cl- conductance. Parallel experiments in the equivalent H+-K+-ATPase-rich vesicles from nonsecreting oxyntic cells showed very little K+ and Cl- conductivity, suggesting that the appearance of large ionic conductance in the membrane is associated with the stimulation of the cell.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have