Abstract

The toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD] and its congeners involves binding to a specific TCDD [Ah] receptor, interaction of this complex with chromatin, and the ultimate production of pleiotropic responses. The mechanism whereby these effects are produced following interaction of TCDD with the receptor complex is not known. Oxidative stress following the production of reactive oxygen species (ROS) may play an important role in the toxic manifestations of TCDD. Thus, the dose and time-dependent effects of TCDD on the production of superoxide anion by peritoneal lavage cells (primarily macrophages) from rats were examined. A maximum increase in superoxide anion production occurred on day 1 after treatment in rats with 50 and 125 micrograms TCDD/kg. At 6 h after a single dose of 125 micrograms TCDD/kg, a 2.4-fold increase in superoxide anion production was observed in peritoneal lavage cells from rats. A single dose of 5 micrograms TCDD/kg had no effect on superoxide anion production by peritoneal lavage cells. A significant increase in DNA single strand breaks within peritoneal lavage cells occurred at 12 h after the oral administration of 50 micrograms TCDD/kg, and a maximum increase in DNA single strand breaks was observed on days 3-5 after treatment. No DNA damage was detected at a dose of 5 micrograms TCDD/kg. No difference was observed with respect to dose and time in the composition of the peritoneal lavage cells. The results clearly indicate that the oral administration of TCDD activates peritoneal lavage cells in rats, and that the activation precedes the formation of DNA single strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.