Abstract

1. Na+-K+-2Cl- cotransport activity was measured in ferret erythrocytes as the bumetanide-sensitive uptake of 86Rb. 2. The Na+-K+-2Cl- cotransport rate was stimulated by treating erythrocytes with sodium arsenite but not by sodium arsenate (up to 1 mM). Stimulation took an hour to develop fully. Arsenite had no effect on bumetanide-resistant 86Rb uptake. 3. In cells stored for 3 days or less, cotransport stimulation by arsenite could be described by assuming arsenite either acts at a single site (EC50, 60+/-14 microM, mean +/- S.E.M., n = 3) or that it acts at both high- (EC50, 35+/-9 microM, mean +/- S.E.M., n = 3) and low- (EC50 >2 mM) affinity sites. 4. Stimulation by 1 mM arsenite was greatest on the day of cell collection (rate about 3 times that of the control), even exceeding that produced by 20 nM calyculin A, and declined during cell storage. Addition of calyculin A to arsenite-stimulated cells resulted in further stimulation of Na+-K+-2Cl- cotransport, suggesting that arsenite and calyculin act synergistically. This was most apparent in stored cells. 5. Stimulation by 1 mM arsenite was not affected by treating cells with the mitogen-activated protein kinase inhibitors SB203580 (20 microM) and PD98059 (50 microM), but was both prevented and reversed by the kinase inhibitors staurosporine (2 microM), 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1, 50 microM) and genistein (0.3 mM), and with a combination of 10 microM A23187 and 2 mM EDTA (to reduce intracellular Mg2+ concentration). Only treatment with EDTA and A23187 prevented stimulation by the combination of 1 mM arsenite and 20 nM calyculin, whereas no treatment was able to fully reverse this stimulation once elicited. 6. Our data are consistent with arsenite stimulating (perhaps indirectly) a kinase that phosphorylates and activates the Na+-K+-2Cl- cotransporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.