Abstract

A number of DNA helicases have been isolated from mammalian cells, but their abilities to stimulate DNA replication accompanied with DNA unwinding have not been addressed so far. We constructed a model DNA replication system using the yeast autonomously replicating sequence (ARS) as the replication origin. In this system, SV40 T antigen as a DNA helicase assembles to the replication origin where the DNA duplex is unwound by torsional stress due to the negative supercoiling of template DNA, which leads to bidirectional DNA replication from the origin. We report here that DNA helicase B isolated from mouse FM3A cells can greatly stimulate DNA synthesis in this replication system in place of SV40 T antigen. DNA synthesis was dependent on the presence of single-stranded DNA binding protein (RP-A), DNA polymerase alpha/primase from mouse cells, and Escherichia coli DNA gyrase. DNA gyrase was required not only at elongation as a DNA swivelase but also at initiation to increase negative superhelical density of template DNA with the assistance of RP-A. A mammalian DNA fragment containing a replication initiation zone upstream of the c-myc gene as well as the yeast ARS fragment acted as a cis-element in this system using DNA helicase B. Both DNA helicase B and SV40 T antigen have the ability to extensively unwind the template DNA in the presence of RP-A and DNA gyrase, which may be crucial for stimulation of DNA synthesis in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.