Abstract

Osmotic hemolysis and resealing greatly increase calcium influx in dog red blood cells. The resealed ghosts show a saturable calcium entry pathway with complex kinetics. As expected for a calcium-sodium exchanger, calcium uptake is stimulated by internal sodium and inhibited by external sodium. Compared to fresh, intact red cells the resealed ghost calcium-sodium exchanger is less responsive to quinidine and to alterations in medium tonicity. The differences in calcium uptake rate among cells from different donors are minimized in the ghost preparation. There are several ways to stimulate sodium-dependent calcium movements in these cells, of which hemolysis-resealing is the most potent. The results of these and previous studies suggest that dog red blood cells have a latent capacity for calcium-sodium exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.