Abstract

Stimulation of pancreatic β-cells with glucose activates the protein kinases B-Raf and extracellular signal-regulated protein kinase that participate in glucose sensing. Inhibition of both kinases results in impairment of glucose-regulated gene transcription. To analyze the signaling pathway controlled by B-Raf, we expressed a conditionally active form of B-Raf in INS-1 insulinoma cells. Here, we show that stimulation of B-Raf strongly activated the transcription factor AP-1 which is accompanied by increased c-Jun and c-Fos promoter activities, an upregulation of c-Jun and c-Fos biosynthesis, and elevated transcriptional activation potentials of c-Jun and c-Fos. Mutational analysis identified the AP-1 sites within the c-Jun promoter and the serum response element (SRE) within the c-Fos promoter as the essential genetic elements connecting B-Raf stimulation with AP-1 activation. In line with this, the transcriptional activation potential of the SRE-binding protein Elk-1 was increased following B-Raf activation. The signal pathway from B-Raf to AP-1 required the activation of c-Jun. We identified the cyclin D1 gene as a delayed response gene for AP-1 following stimulation of B-Raf in insulinoma cells. Moreover, MAP kinase phosphatase-1 and the Ca2+/calmodulin-dependent protein phosphatase calcineurin were identified to function as shut-off-devices for the signaling cascade connecting B-Raf stimulation with the activation of AP-1. The fact that stimulation with glucose, activation of L-type voltage-gated Ca2+ channels, and stimulation of B-Raf all trigger an activation of AP-1 indicates that AP-1 is a point of convergence of signaling pathways in β-cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call