Abstract
Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging owing to the fragile nature of fear extinction, for which the ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low-gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed for fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low-gamma-band oscillations that facilitate fear extinction. Finally, application of low-gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have