Abstract
Groundwater contamination by carbon tetrachloride (CCl4) presents a health risk as a potential carcinogen and pollutant that is capable of depleting the ozone layer. Although use of poplar trees in a phytoremediation capacity has proven to be cost effective for cleaning contaminated sites, minimizing leaf emission of volatile contaminants remains a pressing issue. We hypothesized that recently fixed carbon plays a key role in CCl4 metabolism in planta yielding nonvolatile trichloroacetic acid (TCA) and that the extent of this metabolism can be altered by heightening plant defenses. Labeling intact leaves with 11CO2 (t1/2 20.4 m) can test this hypothesis, because the extremely short half-life of the tracer reflects only those processes involving recently fixed carbon. Using radio-HPLC analysis, we observed [11C]TCA from leaf extract from poplar clones (OP-367) whose roots were exposed to a saturated solution of CCl4 (520 ppm). Autoradiography of [11C]photosynthate showed increased leaf export and partitioning to the apex within 24 h of CCl4 exposure, suggesting that changes in plant metabolism and partitioning of recently fixed carbon occur rapidly. Additionally, leaf CCl4 emissions were highest in the morning, when carbon pools are low, suggesting a link between contaminant metabolism and leaf carbon utilization. Further, treatment with methyl jasmonate, a plant hormone implicated in defense signal transduction, reduced leaf CCl4 emissions two-fold due to the increased formation of TCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.