Abstract

The conical intersection dynamics of thiophenol is studied theoretically using the stimulated X-ray Raman imaging (SXRI) technique. SXRI employs a hard X-ray narrowband/broadband hybrid probe field and provides a real-time and real-space image of the passage through conical intersections. The signal, calculated using the minimal-coupling radiation/matter Hamiltonian, carries the phase information, and the real-space image of the transition charge density can be reconstructed by its Fourier transform. The two conical intersections (S2/S1 (11ππ*/1πσ*) and S1/S0 (1πσ*/S0)) can be distinguished and identified by the diffraction patterns in the level crossing regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.