Abstract

The conical intersection dynamics of thiophenol is studied by computing the stimulated X-ray resonant Raman spectroscopy signals. The hybrid probing field is constructed of a hard X-ray narrowband femtosecond pulse combined with an attosecond broadband X-ray pulse to provide optimal spectral and temporal resolutions for electronic coherences in the level crossing region. The signal carries phase information about the valence-core electronic coupling in the vicinity of conical intersections. Two conical intersections occurring during the course of the S-H dissociation dynamics can be distinguished by their valence-core transition frequencies computed at the complete active space self-consistent field level. The X-ray pulse is tuned such that the Raman transition at the first conical intersection between 1πσ* and 11ππ* involves higher core levels, while the Raman transition at the second conical intersection between 1πσ* and S0 involves the lowest core level in the sulfur K-edge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.