Abstract
AbstractEffect of relativistic nonlinearity on stimulated Raman scattering (SRS) of laser beam propagating carrying null intensity in center [hollow Gaussian beam (HGB)] is studied in collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell's equations. The phenomenon of SRS is shown along with the excitation of seed plasma wave considering relativistic nonlinearity. The power of plasma wave is observed for higher order of HGB. The Raman back reflectivity is studied numerically for various orders of hollow Gaussian laser beam (HGLB) and the numerical analysis shows that these parameters play vital role on reflectivity characteristics. It is observed that the Raman back reflectivity is less for the higher order of HGLB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.