Abstract

The strong stimulated Raman scattering (SRS) from diesel fuel droplets has the potential of providing the relative concentration of multicomponent fuel and the absolute size of individual droplets. The morphology-dependent resonances (MDRs) of a sphere cause the droplet to act as an optical resonator which greatly lowers the SRS threshold. The number density, quality factor, and frequency shift of several MDRs are calculated as a function of the ratio of the index of refraction of the liquid and the surrounding gas, which approaches unity at the thermodynamic critical condition for the fuel spray. The SRS spectra of monodispersed droplets of toluene, pentane, Exxon-Aromatic-150, and Mobil D-2 are presented. The exponential growth region of the SRS intensity I 1S as a function of the input laser intensity I input is investigated for the toluene carbon ring breathing mode v 2 and the pentane C-H stretching region. The I 1S ratio of toluene and pentane is measured as a function of the ratio of the toluene and pentane concentration for monodispersed droplets. The reduced fluctuation in I 1S when I input is changed from multimode to single-mode is displayed as a histogram of the I 1S of the v 2 mode of toluene droplets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.