Abstract

Because of their ultrahigh optical nonlinearities and extremely broad transparency window, germanium microsphere resonators offer the potential for optical processing devices, especially in the mid-infrared (mid-IR) wavelengths. As a semiconductor material for microphotonics applications [1], germanium is particularly attractive owing to its large nonlinearity, high optical damage threshold compared with traditional nonlinear glass materials, and above all, its broad transparency window, extending from the near-IR into the mid-IR. Germanium based optical components have found numerous applications in imaging systems operating in the mid-IR wavelengths, where the principal natural greenhouse gases do not exhibit strong absorption. These applications include rapid sensing and diagnosis [2,] [3], industrial process controls, environmental monitors to hazardous chemical detection [4]. Germanium also is a good electromagnetic shielding material, an attribute that has become increasingly important for modern military applications, where other signals (within the millimeter and centimeter wavelength range) can be strong enough to interfere with nearby IR systems. Elastic light scattering from a germanium microsphere has already been observed in the near-IR [5]. Here, elastic light scattering from a germanium microsphere in the mid-IR region is numerically analyzed using generalized Lorenz-Mie theory (GLMT) [6]. Light interaction with microspheres of various materials is of much interest because of their photonic properties [7]. Germanium has a refractive index of 4, which is even higher than the refractive index of silicon (3.5) in the mid-IR region. The higher refractive index results in higher quality factor morphology dependent resonances (MDRs). A higher value of Q indicates a longer lifetime of the photons trapped inside the cavity and a narrower MDR. Here, the MDRs are observed numerically in the transverse magnetically (TM) and transverse electrically (TE) polarized 90° elastic scattering and 0° transmission for a 40 µm radius germanium microsphere in the mid-IR wavelengths ranging from 5.4 µm to 5.6 µm [8]. The mode spacing of approximately 41 nm between the resonances with the same radial mode order and consecutive polar mode number shows good correlation with the optical size of the germanium microsphere. The germanium microsphere with its high quality factor MDRs can be suitable for optical monitoring and sensing applications in the mid-IR, which require a high spectral resolution [9].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call