Abstract
Let K be a field of characteristic 0 and consider exterior algebras of finite dimensional K-vector spaces. In this short paper we exhibit principal quadric ideals in a family whose Castelnuovo–Mumford regularity is unbounded. This negatively answers the analogue of Stillman's Question for exterior algebras posed by I. Peeva. We show that, via the Bernstein–Gel'fand–Gel'fand correspondence, these examples also yields counterexamples to a conjecture of J. Herzog on the Betti numbers in the linear strand of syzygy modules over polynomial rings.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have