Abstract
We examine the effect of cargo-motor linkage stiffness on the mechanobiological properties of the molecular motor myosin VI. We use the programmability of DNA nanostructures to modulate cargo-motor linkage stiffness and combine it with high-precision optical trapping measurements to measure the effect of linkage stiffness on the motile properties of myosin VI. Our results reveal that a stiff cargo-motor linkage leads to shorter step sizes and load-induced anchoring of myosin VI, while a flexible linkage results in longer steps with frequent detachments from the actin filament under load. Our findings suggest a novel regulatory mechanism for tuning the dual cellular roles of the anchor and transporter ascribed to myosin VI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.