Abstract

Polishing is a kind of finishing process that can effectively reduce the surface defects and improve the form accuracy. This paper presents a novel hybrid machine with 6 degrees of freedom (DOF) serial-parallel topological structure used as an ultra-precision polishing equipment which is composed of a 3-DOF parallel robot, a 2-DOF serial robot and a turntable providing a redundant DOF. Due to the complexity of structure, stiffness performance evaluation of the parallel robot becomes a challenge. As a result, a theoretical model of the parallel robot based on the virtual work principle and the deformation superposition principle is formulated for analyzing the stiffness performance. With the developed model, a multi-objective dimensional optimization method is developed to maximize both the workspace volume and the global stiffness performance of the parallel robot. Artificial intelligence approach based on genetic algorithms is implemented to obtain an optimal combination of structural parameters. The effectiveness of this method is validated by simulation and the parallel robot with optimized structural parameters has a workspace with higher stiffness performance, hence justifies its suitability for high precision polishing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call