Abstract

Parallel manipulators have been proposed to overcome accuracy problem in the end effector positioning, exhibited by serial manipulators(Stewart, 1965)(Reboulet, 1988)(Merlet, 2000). These parallel robots are primarly used in the applications for which the considered processes require a high degree of accuracy, high speeds or accelerations. Aircraft simulator (Stewart, 1965), machining tools (Neugebauer et al., 1998)(Poignet et al., 2002), and various other medical applications (Merlet, 2002)(Leroy et al., 2003)(Plitea et al., 2008) constitute some of the many possible applications of parallel robots. The computation of the inverse dynamic model is essential for an effective robot control. In the field of parallel robots, many approaches have been developed for efficient computation of the inverse dynamics. The formalism of d’Alembert has been used to obtain an analytical expression of the dynamics model (Fichter, 1986)(Nakamura & Ghodoussi, 1989). The principle of virtual works has been applied in (Tsai, 2000) for solving the inverse dynamics of the Gough-Stewart platform and in (Zhu et al., 2005) for a Tau parallel robot. Lagrangian formalism is applied in (Leroy et al., 2003) for the dynamics modeling of a parallel robot used as a haptic interface for a surgical simulator. These various approaches do not seem effective for a robot dynamic control under the real time constraint. A better computational efficiency can be achieved by the development of approaches using recursive schemes, in particular, based on the Newton-Euler formulation. Gosselin (Gosselin, 1996) proposed an approach for the computation of the inverse dynamic model of planar and spatial parallel robots, in which all the masses and inertias are taken into account. This proposed method is difficult to generalize for all the parallel architectures. Dasgupda et al (Dasgupta & Choudhury, 1999) applied this method to several parallel manipulators. Khan (Khan, 2005) has developed a recursive algorithm for the inverse dynamics. This method is applied to a 3R planar parallel robot. Bi et al (Bi & Lang, 2006) use the Newton-Euler recursive scheme for the computation of the articular forces of a tripod system. Khalil et al (Khalil & Guegan, 2004) proposed a general method for the inverse and direct dynamic model computation of parallel robots, which is applied to several parallel manipulators (Khalil & Ibrahim, 2007). Despite the large amount of contributions in this field, there is still a need for improving the computational effeciency of the inverse kinematic and dynamic model clculation for real-time control. In this paper, a parallel robot is considered as a multi robot system with 17

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call