Abstract
In the determination of the dynamic behaviour of a rotating shaft, the fluid film stiffness and damping coefficients of the bearings play an important role. The general practice is to ignore the rotational stiffnesses and damping coefficients due to the tilt of the journal in the bearing. This paper presents the stiffness and damping coefficients of such journal bearings. Using the expression for film thickness, the modified Reynolds' Equation for the tilted finite journal bearing is set up. The solution of this equation for the film pressure is obtained by using Fedor's proportionality hypothesis. The results obtained are presented in the form of non-dimensional charts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.