Abstract
This paper describes a convergent mechanism for the feedback control of cholesterol synthesis and uptake mediated by SREBPs, membrane bound transcription factors. Endoplasmic reticulum (ER) bound SREBPs form complexes with Scap, a polytopic ER protein. In sterol-overloaded cells, Scap/SREBP binds to Insig-1, which retains the complex in the ER. Upon sterol deprivation, the Scap/SREBP complex dissociates from Insig-1, which is then ubiquitinated on lysines 156 and 158 and degraded in proteasomes. Scap/SREBP moves to the Golgi, where SREBP is processed to liberate a nuclear fragment that activates genes for cholesterol synthesis and uptake and the gene for Insig-1. Ubiquitination is not necessary for release of Scap/SREBP from Insig-1, but it establishes a requirement for synthesis of new Insig-1 for feedback inhibition. When the new Insig-1 and cholesterol converge on Scap, Scap/SREBP binds to Insig-1, preventing ubiquitination. The Insig-1/Scap/SREBP complex accumulates in the ER, ready for liberation when the cell is again sterol deprived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.