Abstract

Cholesterol plays an essential role in the life cycle of several enveloped viruses. Many of these viruses manipulate host cholesterol metabolism to facilitate their replication. HIV-1 infection of CD4(+) T cells activates the sterol regulatory element-binding protein 2 (SREBP2) transcriptional program, which includes genes involved in cholesterol homeostasis. However, the role of SREBP2-dependent transcription in HIV-1 biology has not been fully examined. Here, we identify TFII-I, a gene critical for HIV-1 transcription in activated T cells, as a novel SREBP2 target gene. We found TFII-I expression increased after HIV-1 infection or activation of human primary CD4(+) T cells. We show that inhibition of SREBP2 activity reduced TFII-I induction in response to these stimuli. More importantly, small interfering RNA (siRNA)-mediated gene silencing of either SREBP2 or TFII-I significantly reduced HIV-1 production in CD4(+) T cells. We also found that TFII-I potentiates Tat-dependent viral gene expression, consistent with a role at the level of HIV-1 transcription. Collectively, our results demonstrate for the first time that HIV-1 transcription in T cells is linked to cholesterol homeostasis through control of TFII-I expression by SREBP2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.