Abstract
Fluorescence digital imaging microscopy was used to develop a method that allows the continuous monitoring and quantitative measurement of a single myelin internode throughout its development. Using this technique, steroid hormones such as progesterone and dexamethasone were shown to reduce the time required for the initiation and to regulate the rate of myelin synthesis. Progesterone was capable of increasing the rate of myelin synthesis in Schwann cell/neuronal co-cultures in a dose-dependent manner. RT-PCR and in situ hydridization studies revealed that the mRNAs for P450scc and 3beta-hydroxysteroid dehydrogenase, the enzymes involved in progesterone biosynthesis, were induced at the onset of myelin synthesis. The progesterone receptor protein translocated into the nucleus of the neurons during myelin synthesis, suggesting that progesterone could also be affecting neuronal gene expression. Changes in gene expression caused by progesterone are being examined to identify additional factors that may control myelin formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.