Abstract

Dexamethasone and progesterone have been found to accelerate the time of initiation and enhance the rate of myelin synthesis in Schwann cell/neuronal cocultures. The expression of mRNA for cytochrome P450scc (converts cholesterol to pregnenolone), 3beta-hydroxysteroid dehydrogenase (converts pregnenolone to progesterone), and the progesterone receptor were detected and markedly induced during peak myelin formation in the cocultures. The mRNA for the glucocorticoid receptor was detected, but was found to be constituitively expressed. In addition, the specific activity of 3beta-hydroxysteroid dehydrogenase was measured and found to increase by 10-fold. The mRNA for cytochrome P450scc and 3beta-hydroxysteroid dehydrogenase also were found to be induced during the differentiation of O-2A precursor cells to oligodendrocytes. Fibroblast growth factor and platelet-derived growth factor were found to have proliferative effects on Schwann cells, but they had no effect on the initiation or the rate of myelin formation. These results demonstrate that myelin-forming cells have inducible enzymes responsible for steroid biosynthesis and suggest a critical role for endogenous steroid hormones in signaling the initiation and enhancing the rate of myelin formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.