Abstract

We calculate the incoherent resonant and non-resonant scattering production of sterile neutrinos in the early universe. We find ranges of sterile neutrino masses, vacuum mixing angles, and initial lepton numbers which allow these species to constitute viable hot, warm, and cold dark matter (HDM, WDM, CDM) candidates which meet observational constraints. The constraints considered here include energy loss in core collapse supernovae, energy density limits at big bang nucleosynthesis, and those stemming from sterile neutrino decay: limits from observed cosmic microwave background anisotropies, diffuse extragalactic background radiation, and ${}^{6}\mathrm{L}\mathrm{i}/\mathrm{D}$ overproduction. Our calculations explicitly include matter effects, both effective mixing angle suppression and enhancement (MSW resonance), as well as quantum damping. We for the first time properly include all finite temperature effects, dilution resulting from the annihilation or disappearance of relativistic degrees of freedom, and the scattering-rate-enhancing effects of particle-antiparticle pairs (muons, tauons, quarks) at high temperature in the early universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.