Abstract

In usual particle models, sterile neutrinos can account for the dark matter of the Universe only if they have masses in the keV range and are warm dark matter. Stringent cosmological and astrophysical bounds, in particular imposed by X-ray observations, apply to them. We point out that in a particular variation of the inert doublet model, sterile neutrinos can account for the dark matter in the Universe and may be either cold or warm dark matter candidates, even for masses much larger than the keV range. These Inert-Sterile neutrinos, produced non-thermally in the early Universe, would be stable and have very small couplings to Standard Model particles, rendering very difficult their detection in either direct or indirect dark matter searches. They could be, in principle, revealed in colliders by discovering other particles in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.