Abstract
Phenprocoumon belongs to the group of vitamin K antagonists (VKAs), for example warfarin and acenocoumarol. It is widely used for therapeutic anticoagulation and clinically administered as a racemate. Both enantiomers are partially metabolized by the polymorphic CYP2C9 enzyme. The pharmacokinetics are, however, substantially less dependent on CYP2C9 activity or genotype than for other CYP2C9-metabolised VKAs, and pharmacokinetic differences for the enantiomers are only minor. We have investigated the stereospecific pharmacokinetics of the monohydroxylated phenprocoumon metabolites in human plasma by achiral-chiral LC-LC-MS-MS coupling. In addition to the known metabolites, 4'-, 6-, and 7-hydroxyphenprocoumon, two other monohydroxylated metabolites (M1 and M2) were detected in plasma and human liver microsomal incubations. One of these was identified as 2'-hydroxyphenprocoumon by comparison with synthetic standards; the other seemed to be a side-chain-hydroxylated derivative. Analysis of enantiomeric metabolite ratios after a single oral dose of phenprocoumon revealed changes over time with an overall preponderance of the respective (R) enantiomers. The minor role of CYP2C9 in 4'-hydroxy-PPC formation and the effect of CYP2C9 genotype for (S)-6- and (S)-7-hydroxy-PPC were confirmed. M1 and M2 are formed highly stereoselectively, without dependence on CYP2C9 genotype. These may be interpreted as alternative metabolic pathways that render phenprocoumon less dependent on CYP2C9 activity or genotype.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have