Abstract

The ruthenium-catalyzed asymmetric hydrogenation of simple ketones to generate enantiopure alcohols is an important process widely used in the fine chemical, pharmaceutical, fragrance, and flavor industries. Chiral diphosphine-RuCl2-1,2-diamine complexes are effective catalysts for the reaction giving high chemo- and enantioselectivity. However, no diphosphine-RuCl2-1,2-diamine complex has yet been discovered that is universal for all kinds of ketone substrates, and the ligands must be carefully chosen for each substrate. The procedure of finding the best ligands for a specific substrate can be facilitated by using virtual screening as a complement to the traditional experimental screening of catalyst libraries. We have generated a transition state force field (TSFF) for the ruthenium-catalyzed asymmetric hydrogenation of simple ketones using an improved Q2MM method. The developed TSFF can predict the enantioselectivity for 13 catalytic systems taken from the literature, with a mean unsigned error of 2.7 kJ/mol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call