Abstract

Stereoselectivity control and understanding in the metal-catalyzed reactions are fundamental issues in catalysis. Here we report sterically controlled rhodium-catalyzed SN2’-type substitution reactions of optically active tertiary propargylic alcohols with arylmetallic species affording the non-readily available enantioenriched tetrasubstituted allenes via either exclusive syn- or anti-β-OH elimination, respectively, under two sets of different reaction parameters. Detailed mechanistic experiments and density functional theory (DFT) studies reveal that the exclusive anti-Rh(I)-OH elimination is dictated by the simultaneous aid of in situ generated boric acid and ambient water, which act as the shuttle in the hydroxy relay to facilitate the Rh(I)-OH elimination process via a unique ten-membered cyclic transition state (anti-TS2_u). By contrast, the syn-Rh(III)-OH elimination in C–H bond activation-based allenylation reaction is controlled by a four-membered cyclic transition state (syn-TS3) due to the steric surroundings around the Rh(III) center preventing the approach of the other assisting molecules. Under the guidance of these mechanistic understandings, a stereodivergent protocol to construct the enantiomer of optically active tetrasubstituted allenes from the same starting materials is successfully developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.