Abstract

Biotransformations on larger scale are mostly limited to cases in which alternative chemical routes lack sufficient chemo-, regio-, or stereoselectivity. Here, we expand the applicability of biocatalysis by combining cheap whole cell catalysts with a microaqueous solvent system. Compared to aqueous systems, this permits manifoldly higher concentrations of hydrophobic substrates while maintaining stereoselectivity. We apply these methods to four different two-step reactions of carboligation and oxidoreduction to obtain 1-phenylpropane-1,2-diol (PPD), a versatile building block for pharmaceuticals, starting from inexpensive aldehyde substrates. By a modular combination of two carboligases and two alcohol dehydrogenases, all four stereoisomers of PPD can be produced in a flexible way. After thorough optimization of each two-step reaction, the resulting processes enabled up to 63 g L–1 product concentration (98% yield), space-time-yields up to 144 g L–1 d–1, and a target isomer content of at least 95%. Despit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.