Abstract
We developed a versatile stereoselective route for the synthesis of new 2'-(S)-CCG-IV analogues. The route allows for late stage diversification and thereby provides access to a great variety of conformationally restricted cyclopropyl glutamate analogues. A selection of the 2'-(S)-CCG-IV analogues were evaluated using two-electrode voltage-clamp electrophysiology at recombinant GluN1/GluN2A-D receptors, demonstrating that agonists can be developed with GluN2 subunit-dependent potency and agonist efficacy. We also describe a crystal structure of the GluN2A agonist binding domain in complex with 2'-butyl-(S)-CCG-IV that determines the position of 2'-substituents in (S)-CCG-IV agonists in the glutamate binding site and provides further insight to the structural determinants of their agonist efficacy. The stereoselective synthesis described here enables versatile and straight-forward modifications to diverse analogues of interest for the development of potent subtype-specific NMDA receptor agonists and other applications.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have