Abstract

Co(II)-based metalloradical catalysis has been, for the first time, successfully applied for asymmetric intramolecular C-H alkylation of acceptor/acceptor-substituted diazo reagents. Through the design and synthesis of a new D2-symmetric chiral amidoporphyrin as the supporting ligand, the Co(II)-based metalloradical system, which operates at room temperature, is capable of 1,5-C-H alkylation of α-methoxycarbonyl-α-diazosulfones with a broad range of electronic properties, providing the 5-membered sulfolane derivatives in high yields with excellent diastereoselectivity and enantioselectivity. In addition to complete chemoselectivity toward allylic and allenic C-H bonds, the Co(II)-based metalloradical catalysis for asymmetric C-H alkylation features a remarkable degree of functional group tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.