Abstract

The cobalt(II) complex of new D2-symmetric chiral porphyrin 3,5-DiMes-ChenPhyrin, [Co(P2)], has been shown to be a highly effective chiral metalloradical catalyst for enantioselective cyclopropenation of alkynes with acceptor/acceptor-substituted diazo reagents such as α-cyanodiazoacetamides and α-cyanodiazoacetates. The [Co(P2)]-mediated metalloradical cyclopropenation is suitable to a wide range of terminal aromatic and related conjugated alkynes with varied steric and electronic properties, providing the corresponding tri-substituted cyclopropenes in high yields with excellent enantiocontrol of the all-carbon quaternary stereogenic centers. In addition to mild reaction conditions, the Co(II)-based metalloradical catalysis for cyclopropenation features a high degree of functional group tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call