Abstract

This paper describes the morphological responses of adult male guinea pig adrenals to dexamethasone (DEX) and adrenocorticotrophic hormone (ACTH), in both qualitative and quantitative terms. Most organelles and inclusions are affected, but their responses often vary in the different cell types examined: zona fasciculata externa and interna, and zona reticularis. Following DEX the volume of lipid droplets increases in cells of zona fasciculata externa but decreases in zona reticularis; smooth endoplasmic reticulum decreases in fasciculata externa but increases in reticularis. Following ACTH, exactly the opposite occurs. This strongly suggests differing functions for these subcellular entities in each cell type, particularly for the smooth reticulum, as well as for the cells themselves. The volume of the Golgi complex markedly decreases following DEX in all cells but increases only in zona fasciculata interna and zona reticularis following ACTH. These deeper cortical cells are known to secrete at least one sulfated steroid, dehydroepiandrosterone sulfate, and these changes in the Golgi complex strengthen the suggestion that the Golgi plays a role in sulfation of steroids. Mitochondrial volume and number decrease in all cells following DEX, supporting their role in steroidogenesis. Further decreases in their volume, accompanied by increases in their number following ACTH, may be related to a proliferation of mitochondria in response to ACTH. Changes in peroxisome volume and number, following DEX and ACTH, suggest a possible role for these organelles in steroid cell metabolism. Lysosomes decrease in volume in all cells following ACTH. This does not support the recently suggested concept that they play a role in steroid secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.