Abstract

Intravesical instillation therapy is an alternative approach to oral medications for the treatment of severe bladder diseases, offering high drug concentrations at the site of action while minimising systemic side effects. However, therapeutic efficacy is often limited because of the short residence time of the drug in the bladder and the need for repeated instillations. This study reports, for the first time, the use of stereolithography (SLA) 3D printing to manufacture novel indwelling bladder devices using an elastic polymer to achieve extended and localised delivery of lidocaine hydrochloride. The devices were designed to be inserted into and retrieved from the bladder using a urethral catheter. Two types of bladder devices (hollow and solid) were prepared with a resilient material (Elastic Resin) incorporating three drug loads of lidocaine hydrochloride (10% w/w, 30% w/w and 50% w/w); a drug frequently used to treat interstitial cystitis and bladder pain. All of the devices showed acceptable blood compatibility, good resistance to compressive and stretching forces and were able to recover their original shape immediately once external forces were removed. In vitro drug release studies showed that a complete release of lidocaine was achieved within 4 days from the hollow devices, whereas the solid devices enabled sustained drug release for up to 14 days. SLA 3D printing therefore provides a new manufacturing route to produce bladder-retentive drug delivery devices using elastic polymers, and offers a revolutionary and personalised approach for clinical intravesical drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.