Abstract

Medium-ring (7-9-membered) benzo-fused N-heterocycles - a core structure in several important pharmaceuticals - have a diverse range of interesting conformational and stereochemical properties which arise from restricted bond rotation in the non-aromatic ring. The atropisomers of these pharmaceutically relevant N-heterocycles typically exhibit different biological activities, warranting the need to deeply understand the factors controlling the conformation and stereochemistry of the systems. Beginning with a brief introduction to atropisomer classification, this review will detail a number of medium-ring benzo-fused N-heterocycle systems from the recent literature to provide an overview of structural factors which can affect the atropisomeric nature of the systems by altering the overall conformation and rate of stereo-inversion. As well as general factors such as ring-size and sterics, the impact of additional stereocentres in these systems will be addressed. This includes the differences between sulfur, nitrogen and carbon stereocentres, and the consequences of stereocentre placement around the N-heterocycle ring. Further, conformational stabilisation via non-covalent intramolecular bonds will be explored. As such, this review represents a significant resource for aiding in the design, synthesis and study of new and potentially bioactive medium-ring benzo-fused N-heterocycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.